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1 INTRODUCTION

1.1 Scope and content of the document

The objective of this document is to describe the theoretical basis, justification and
methods applied to produce annual maps of land use and land cover (LULC) in
Uruguay from 1985 to 2024 (Collection 3). The document presents a general
description of the satellite image processing, the feature inputs and the process step

by step applied to obtain the annual classifications.

1.2 Region of Interest
MapBiomas Uruguay initiative was created to produce LULC annual maps for the

Uruguay territory (Figure 1). The total mapped area was 17,8 million hectares (Mha)

58°W 57°W 56°W 55°W 54°wW
1 1 L L L
30°SH -30°S
31°S -31°S
32°S4 -32°S
33°S4 L3305
34°S+ L 345
35°S4 |
T T T T T
58°W 57°W 56°W 55°W 54°W 53°W
Geomorphologic regions I Rio de Ia Plata Grasslands
- Western Sediment Basin Lagoon Merin Graben
Gondwanic Sediment Basin Santa Lucia Graben
Basaltic Cuesta Eastern Hills 0 75 150
1

Km.

Crystalline Shield

Figure 1. Location of Uruguay within the Rio de la Plata grasslands biome and the regionalisation
used in the classifications (Geomorphological regions proposed by Panario et al., 2014).



2 GEOGRAPHICAL UNITS OF CLASSIFICATION

The classification process was carried out in smaller and homogeneous zones
spatial units. These units correspond to seven geomorphological regions (Panario et
al. 2014) (Figure 1). The purpose of these geographical units of classification was to
try to reduce samples and classes confusion and to allow a better balance of

samples and results to improve accuracy.

3 REMOTE SENSING DATA

3.1 Landsat Collection

The imagery dataset used in the MapBiomas Uruguay (LULC), Collection 3 was
obtained from the Landsat sensors Thematic Mapper (TM), Enhanced Thematic
Mapper Plus (ETM+) and the Operational Land Imager and Thermal Infrared Sensor
(OLI-TIRS), on board of Landsat 5, Landsat 7 and Landsat 8, respectively. The
Landsat imagery collections with 30 m-pixel resolution were accessible via Google
Earth Engine and were provided by NASA and USGS. The MapBiomas Uruguay
Collection 3 used Collection 2, Tier 1 Landsat Surface Reflectance products from
USGS, which underwent through radiometric calibration and orthorectification
correction based on ground control points and digital elevation model to account for
pixel co-registration and correction of displacement errors. A total of 18 scene
boundaries were used to cover the entire region, where each of them is totally or
partially within the area.

According to the year and the quality of available images, a specific Landsat
collection was selected:

e from 1985 to 1999: Landsat 5,

e year 2000: Landsat 5 (Brazil and Uruguay) and Landsat 7 (Argentina),

e years 2001, 2002 and 2012: Landsat 7,

e from 2003 to 2011: Landsat 5,

e from 2013 to 2024: Landsat 8.

3.2 Landsat Mosaics
All Landsat scenes were merged and clipped within standardized spatial units for

data processing, hereafter called ‘charts’, based on the grid of the World



International Chart to the Millionth, at the 1:250,000 scale level. A total of 19 charts
were used to cover the biome (Figure 2). Each chart sets the geographical limits to

build up the temporal and spatial Landsat mosaics and to proceed with digital

classification procedures. Each geographical classification unit was generated by

merging the correspondent mosaic charts.
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Figure 2. Charts scheme used to build up Landsat mosaics
process.
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3.3 Definition of the temporal period

The mosaics were formed by the composition of pixels in each set of images for a
certain time period. The periods of the year in which the images are selected vary by
country and result from the balance between the probability of maximizing the
differences in classes spectral behavior and the availability of cloud-free images. The
considered period was from September to November of each year. Nevertheless, for
some years this period was adapted (extended one to three months) for each chart
according to the availability of cloud-free images. For example, if during the
three-months period a cloud free mosaic could not be generated, the period was
extended to four, five or six months to get a complete or almost complete mosaic.
For the selection of Landsat scenes a threshold of 90% of cloud cover was applied
(i.e., any available scene with up to 90% of cloud cover was accepted). This limit
was established based on a visual analysis, after many trials observing the results of
the cloud removing/masking algorithm. Time periods were extended for some years

and portions of the study area when the availability of cloud-free images was low.
4 CLASSIFICATION
4.1 Overview of methodological process

The methodological procedures of Collection 3 included several steps (Figure 3).

The first step was to generate annual Landsat image mosaics based on yearly
periods. The second step was to generate a new selection of temporally stable
samples derived from the stable areas of the maps of Collection 2. Stable areas
were defined in sub-periods of near 10 years-length (1985-1994, 1995-2004,
2005-2014 and 2015-2023). Then, the spectral feature inputs derived from the
Landsat bands were extracted and associated to each sample point. Once the
samples for each LULC class were selected for each of the subregions, it was
possible to adjust the training data set according to its statistical needs. The number
of samples for training for each class was defined initially according to the proportion
of the area of each class and its variation along the classification period (sample size
balance). Additionally, to improve the classification results, complementary samples
were generated, defining georeferenced points of different classes by visual
interpretation of historical satellite images (high and very high resolution images) and
time series of vegetation indices. Based on the adjusted training data set, a

supervised classification using the random forest algorithm was run.



Following that, gap, spatial, temporal and frequency filters were applied to remove
classification noise and stabilize the classification. The LULC maps of each region
were integrated to generate the final map of Collection 3. The MapBiomas Uruguay
annual LULC maps were used to derive the transition analysis (with an additional
spatial filter application) and statistics. The statistical analysis covered different
spatial territories, such as countries, state similar and municipality similar levels of

each country, water basin and phytogeographic provinces.
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Figure 3. Classification process of Collection 3 in the MapBiomas Uruguay for the period 1985-2024

4.2 Map Legend
The classification for the MapBiomas Uruguay initiative using Landsat mosaics

included eleven land use and land cover (LULC) classes (Table 1): Closed forest
and closed shrubland (3), Flooded grassland and swampy areas (11), Grassland
(12), Pasture (15), Pinus plantation (79), Eucalyptus plantation (80), Other forestry
uses (83), Agriculture (18), Non vegetated area (22), River, lake or ocean (33) and
Not observed (27). A full description of the legend is described in the document

Legend Description.



http://ruguay.mapbiomas.org/codigos-de-la-leyenda/
http://ruguay.mapbiomas.org/codigos-de-la-leyenda/

Table 1. Land cover and land use classes considered for digital classification of Landsat mosaics for
the MapBiomas Uruguay initiative - Collection 3.

Legend class of Collection 3 Numeric ID Color
1.1. Forest formation 3
2.1. Wetland 11
2.2. Grassland 12
3.1. Pasture 15
3.2. Agriculture 19
3.3.1. Pinus plantation 79
3.3.2. Eucalyptus plantation 80
3.3.2. Other forestry uses 83
4. Non vegetated area 22
5.1. River, lake or ocean 33

6. Not observed 27




4.3 Annual Mosaics

The total available bands of the MapBiomas Uruguay feature space is composed of
93 input variables, including the original Landsat bands, fractional and textural
information derived from these bands (Table 2). Reducers were used to generate
temporal features such as:

e Median: median of the pixel values of the best mapping period defined by each
country.

e Median_dry: median of the quartile of pixels with the lowest NDVI values.

e Median_wet: median of the quartile of pixels with the highest NDVI values.

e Amplitude: amplitude of variation of the index considering all the images of each
year.

e stdDev: standard deviation of all pixel values of all images of each year.

e Min: lower annual value of the pixels of each band.



Table 2. List of the variables included in the feature space used in the classification processes of the MapBiomas Uruguay Initiative Collection 3 (1985-2024).

Va Temporal Script
D riable Description tatistics range acronym Group
Evi Enhanced Vegetation mosaic evi2_am Spectral index
2 Index 2 mplitude months p P
Gy Green vegetation mosaic v am Spectral Mixture
fraction mplitude months gv_amp Modeling
Nd Normalized Difference mosaic ndfi am Spectral Mixture
fi Fraction Index mplitude months -amp Modeling
Nd Normalized Difference mosaic ndvi_am Spectral index
Vi Vegetation Index mplitude months p P
Nd Normalized Difference mosaic ndwi_am
. . Water Index
Wi Water Index mplitude months p
Soi Soil fraction mosaic soil am Spectral Mixture
| mplitude months -amp Modeling
w Woodland  ecosystem mosaic wefi_am Fraction index
efi fraction index mplitude months p
Bl Landsat band . mosaic . blue_me Landsat band
ue edian months dian
Bl fi I
Landsat band . . year irst . blue_me Landsat band
ue dry edian quartile dian_dry
Bl Landsat band . . year ~ fourth . blue_me Landsat band
ue wet edian quartile dian_wet
lul A i i i i
Cai Cellulose bsorption . mosaic cai_medi Spectral index
0 Index edian months an
Cai Cellulose Absorption year -first cai_medi Spectral index



Va Temporal Script
riable Description tatistics range acronym Group
dry Index edian quartile an_dry
cl . mosaic cloud_m Spectral Mixture
oud Cloud fraction edian months edian Modeling
Evi Enhanced Vegetation mosaic evi2_me Spectral index
2 Index 2 edian months dian P
Evi Enhanced Vegetation year -first evi2_me Spectral index
2 dry Index 2 edian quartile dian_dry P
Evi Enhanced Vegetation year — fourth evi2_me Spectral index
2 wet Index 2 edian quartile dian_wet P
. -1 . .
. Gc (nir/green — 1) - mosaic . gcvi_med Spectral index
Vi edian months ian
G i -1 first i d .
' c (nir/green — 1) ' ' year irs . gcvi_me Spectral index
vidry edian quartile ian_dry
i -1 — fourth i
. Gc (nir/green — 1) _ . year — fourt . gevi_med Spectral index
vi wet edian quartile ian_wet
Gr Landsat band . mosaic . green_m Landsat band
een edian months edian
Fi
Gr Landsat band . . year Irst . green_m Landsat band
een dry edian quartile edian_dry
Gr Landsat band . . year ~ fourth . e Landsat band
een wet edian quartile edian_wet
Green vegetation mosaic gv_medi Spectral Mixture
Gv . . .
fraction edian months an Modeling
Gv GV /(100 - shade) mosaic gvs_medi Spectral Mixture



Va Temporal Script
riable Description tatistics range acronym Group
s edian months an Modeling
Gv year -first gvs_medi Spectral Mixture
GV /(100 - shad . ) - .
sdry /1 shade) edian quartile an_dry Modeling
Gv year — fourth gvs_medi Spectral Mixture
V /(100 - sh -
s wet GV/(100 - shade) edian quartile an_wet Modeling
Ha Hall cover vegetation mosaic hallcover .
. . . Spectral index
llcover index edian months _median
Nd Normalized Difference mosaic ndfi_me Spectral Mixture
fi Fraction Index edian months dian Modeling
Nd Normalized Difference year -first ndfi_me Spectral Mixture
fidry Fraction Index edian quartile dian_dry Modeling
Nd Normalized Difference year — fourth ndfi_me Spectral Mixture
fi wet Fraction Index edian quartile dian_wet Modeling
Nd Normalized Difference mosaic ndvi_me .
. . . . - Spectral index
Vi Vegetation Index edian months dian
Nd Normalized Difference year -first ndvi_me Spectral index
vidry Vegetation Index edian quartile dian_dry P
Nd Normalized Difference year — fourth ndvi_me .
. . . . . Spectral index
vi wet Vegetation Index edian quartile dian_wet
Nd Normalized Difference mosaic ndwi_me Water Index
wi Water Index edian months dian
Nd Normalized Difference year -first ndwi_me Water Index
wi dry Water Index edian quartile dian_dry
Nd Normalized Difference year — fourth ndwi_me Water Index



Va Temporal Script
riable Description tatistics range acronym Group
wi wet Water Index edian quartile dian_wet
Ne Landsat band mosaic nir_medi Landsat band
ar Infrared (NIR) edian months an
Ne ear first nir_medi
ar Infrared (NIR) Landsat band . . y - Landsat band
edian quartile an_dry
dry
Ne . .
ar Infrared (NIR) Landsat band . . year — fourth nir_medi Landsat band
edian quartile an_wet
wet
Np Non-photosynthetic mosaic npv_med Spectral Mixture
v vegetation fraction edian months ian Modeling
. Photochemical mosaic pri_medi .
Pri . . Spectral index
reflectance index edian months an
Pri Photochemical year -first pri_medi Spectral index
dry reflectance index edian quartile an_dry P
Pri Photochemical year — fourth pri_medi Spectral index
wet reflectance index edian quartile an_wet P
Re Landsat band . mosaic . red_med Landsat band
d edian months ian
R -first d d
€ Landsat band . . year Irs . red_me Landsat band
ddry edian quartile ian_dry
Re Landsat band . . year — fourth . red_med Landsat band
d wet edian quartile ian_wet
Sa Soil-adjusted Vegetation mosaic savi_med .
. . . Spectral index
Vi Index edian months ian



Va Temporal Script
riable Description tatistics range acronym Group

Sa Soil-adjusted Vegetation year ~first savi_med .
. . . . Spectral index
vidry Index edian quartile ian_dry

Sa Soil-adjusted Vegetation year — fourth savi_med .
. . . . Spectral index
vi wet Index edian quartile ian_wet

Sef Savanna Ecosystem mosaic sefi_med L
. . . . Fraction index
i Fraction Index edian months ian

Sef Savanna Ecosystem year -first sefi_med L
. . . . . Fraction index
idry Fraction Index edian quartile ian_dry

Sh . mosaic shade_m Spectral Mixture

h f _

ade shade fraction edian months edian Modeling

Soi . . mosaic soil_med Spectral Mixture

Soil fraction . . .

| edian months ian Modeling

Sh mosaic swirl_m
ortwave Infrared Landsat band edian months edian - Landsat band
(SWIR) 1

Sh ear first swirl_m
ortwave Infrared Landsat band edian uartile ¥ edian dr - Landsat band
(SWIR) 1 dry g -ary

Sh ear — fourth swirl_m
ortwave Infrared Landsat band edian uartile ¥ edian wet - Landsat band
(SWIR) 1 wet g -

Sh mosaic swir2_m
ortwave Infrared Landsat band edian months edian - Landsat band
(SWIR) 2

Sh Landsat band . . year “first . swir2_m Landsat band
ortwave Infrared edian quartile edian_dry



Va Temporal Script
riable Description tatistics range acronym Group
(SWIR) 2 dry
sh ear — fourth swir2_m
ortwave Infrared Landsat band edian uartile y edian wet - Landsat band
(SWIR) 2 wet g -
w Woodland  ecosystem mosaic wefi_me Fraction index
efi fraction index edian months dian
w Woodland  ecosystem year — fourth wefi_me L
. L . . . Fraction index
efi wet fraction index edian quartile dian_wet
. Bl Landsat band . mosaic blue_min Landsat band
ue min inimum months
. Gr Landsat band - mosaic green_mi Landsat band
een min inimum months n
Ne mosaic
ar Infrared (NIR) Landsat band L nir_min Landsat band
. inimum months
min
. Re Landsat band L mosaic red_min Landsat band
d min inimum months
sh mosaic swirl _mi
ortwave Infrared Landsat band inimum months N - Landsat band
(SWIR) 1
sh mosaic Swir2_mi
ortwave Infrared Landsat band inimum months N - Landsat band
(SWIR) 2
Bl Landsat band tandard mosaic blue_std Landsat band
ue months Dev

deviation



Va Temporal Script
riable Description tatistics range acronym Group
. Cellulose Absorption mosaic cai_stdD .
Cai . Spectral index
Index edian months ev
cl . mosaic cloud_st Spectral Mixture
Cloud fraction tandard - . P
oud . months dDev Modeling
deviation
Evi Enhanced Vegetation mosaic evi2_std .
tandard - Spectral index
2 Index 2 . months Dev
deviation
G . i i_std .
. ¢ (nir/green — 1) tandard mosaic gcvi_s Spectral index
Vi L months Dev
deviation
Gr mosaic reen_st
Landsat band tandard & - Landsat band
een . months dDev
deviation
Gy . Green vegetation tandard mosaic gv_stdDe ' Spectral Mixture
fraction . months v Modeling
deviation
G i tdD Spectral Mixt
\ GV / (100 - shade) tandard mosaic gvs_s - pectral Mixture
s . months ev Modeling
deviation
Ha Hall cover vegetation mosaic hallcover .
. tandard Spectral index
llcover index) L months _stdDev
deviation
Nd Normalized Difference mosaic ndfi_std Spectral Mixture
. . tandard .
fi Fraction Index . months Dev Modeling
deviation
Nd Normalized Difference mosaic ndvi_std Spectral index



Va Temporal Script
riable Description tatistics range acronym Group
Vi Vegetation Index tandard months Dev
deviation
Nd Normalized Difference mosaic ndwi_std
. tandard Water Index
Wi Water Index . months Dev
deviation
N i ir_stdD
N Landsat band tandard mosaic nir_s Landsat band
ar Infrared (NIR) L months ev
deviation
i D
Re Landsat band tandard mosaic red_std Landsat band
d L months ev
deviation
S Soil-adjusted Vegetati i i_stdD .
' a oil-adjusted Vegetation tandard mosaic savi_s Spectral index
Vi Index . months ev
deviation
Sef Savanna Ecosystem mosaic sefi_stdD Lo
. . tandard - Fraction index
i Fraction Index L. months ev
deviation
Sh Shade fraction tandard mosaic shade_st - Spectral Mixture
ade . months dDev Modeling
deviation
Soi . . mosaic soil_stdD Spectral Mixture
soil fraction tandard .
| . months ev Modeling
deviation
sh mosaic swirl st
ortwave Infrared Landsat band tandard months dDev - Landsat band
(SWIR) 1 deviation
Sh Landsat band mosaic swir2_st Landsat band



Va Temporal Script
riable Description tatistics range acronym Group
ortwave Infrared tandard months dDev
(SWIR) 2 deviation
w Woodland  ecosystem mosaic wefi_std L
. L tandard Fraction index
efi fraction index . months Dev
deviation
Slo . Geomorphomet
Terrain slope . Permanent slope .
pe dentity ric
Gr Texture from Landsat mosaic green_m
een Texture band ean months edian_texture
Lat . . . .
itude Geographical coordinate Permanent Latitude Geographic
Lo . . Longitud .
ngitude Geographical coordinate Permanent o gty Geographic
Nd Normalized Difference Last 3 years ndvi_am .
. . . . Spectral index
vi_3years Vegetation Index mplitude mosaic months p_3y




4.4 Classification algorithm, training samples and parameters
Classification was performed subregion by subregion, year by year, using the
Random Forest algorithm (Breiman, 2001) available in Google Earth Engine, running

100 iterations (random forest trees).

Training samples for each subregion were defined following a strategy of using
random pixels for which the land use and land cover remained the same (stable
samples) along the maps of Collection 3 over different subperiods: 1985-1994,
1995-2004, 2005-2014 and 2015-2024, named as “stable samples”.

The identification of stable areas consist in extracting random pixels or “stable
samples” based on a criterion of minimum temporal frequency aiming to ensure
confidence to use them as training areas. Each pixel should be classified with the
same LULC class throughout each sampling subperiod (1985-1994, 1995-2004,
2005-2014 and 2015-2024). A layer of pixels with a stable classification for each
subperiod was then generated. From the resulting layer of stable samples, a subset
of 2,000 samples for each subregion was randomly generated for each class for
each subperiod. It is important to clarify that not all of these samples were

necessarily used in the classification process for each year.

In addition, a classical procedure to detect outliers was implemented. For each year,
and within each training class, we searched for outliers in all variables. An outlier
was defined as any value of a specific variable lower or higher than 1.5 times the
interquartile range (the first quartile value subtracted from the third quartile value)
considering all values of this variable within a specific class of a particular year.
Samples containing values considered outliers for some variables were not
discarded a priori, but fixed by replacing those values with the 5th percentile or the
95th percentile, whenever they were lower or higher than the thresholds considered,
respectively. Finally, we disregarded only those samples containing simultaneously

more than 20 variables of the feature space with values considered as outliers.

4.4.1 Sample size balance

We generated a fixed number of samples for each class, subregion and subperiod
for classification. However we used in the classification process only a random
subset based on the class area proportion within each subregion, considering each

year to be classified. To do this, we previously adjusted linear simple functions to



estimate the area of each class for each year from 1985 to 2024, based on the
annual class area observed along the Collection 2 dataset. These functions were
used to estimate, for each year, the proportion of each class to train the classifier.
Then, these annual proportions for each class were set to extract a subset of the
available samples for the correspondent classification in each year. Whenever the
classification resulted in overestimation or underestimation of the class after
comparing with supplemental information (e.g.: Collection 3 maps, independent crop
type maps, etc.) this proportion was adjusted changing the bias (intercept of linear
regression model) accordingly. Notwithstanding the above, a minimum number of 50
to 100 samples per class was set for each region and year, to ensure the correct

detection of the less frequent categories.

4.4.2 Complementary samples

The need for adding complementary samples was evaluated by visual inspection of
the output of a preliminary classification, with both Landsat and high-resolution
images available in Google Earth Engine and time series of vegetation indices, and
also by comparing with the Collection 2 classification. Complementary sample
collection was also done manually using points in Google Earth Engine Code Editor.
All the false-color images of the 40 years (1985-2024) Landsat mosaics and the
vegetation index time series were checked at the selected point. Based on the
knowledge of each subregion, the samples for different classes were collected.
Complementary samples previously generated for Collection 2 were also added in

some regions to improve the classification when necessary.

4.4.5 Final classification

The final classification was performed for all subregions and years combining stable
and complementary samples. For some years, the classification output resulted in
anomalous results for some classes. Then, it was necessary to improve the
classification through a new sample size balance and a specific set of

complementary samples.

4.4.6 Post-classification
The results of the final classification were improved through a sequence of filters, to
correct missing data, “salt-and-pepper” classification errors and, specially, cases of

misclassification. Temporal filters were done with the aim to generate a more stable



classification pattern over time, avoiding unexpected class variation during short

times.

4.4.6.1. Gap fill filter

A filter to fill no-data pixels (“gaps”) was applied. Because theoretically the no-data
values are not allowed, they are replaced by the temporally nearest valid
classification. In this procedure, if no “future” valid position was available, then the
no-data value was replaced by its previous valid class. Therefore, gaps should only
exist if a given pixel has been permanently classified as no-data throughout the

entire temporal domain.

4.4.6.2. Spatial filter

The spatial filter avoids unwanted modifications to the edges of the pixel groups, a
spatial filter was built based on the "connectedPixelCount" function. Native to the
Google Earth Engine platform, this function locates connected components
(neighbors) that share the same pixel value. Thus, only pixels that did not share
connections to a predefined number of identical neighbors were considered isolated.
In this filter, at least six connected pixels were needed to reach the minimum
connection value. Consequently, the minimum mapping unit is directly affected by

the spatial filter applied, and it was defined as 6 pixels (~0,5 ha).

4.4.6.3. Temporal filters

The temporal filters use the information from the year before and after to identify and
correct a pixel misclassification, considered as cases of invalid transitions. In a first
step, the filter looks for specific cover classes (3, 11, 12, 33) that are not this class in
1985 and were kept unchanged in 1986 and 1987 and then corrects the 1985’s value
to avoid any regeneration in the first year. In a second step, the filter looks at a pixel
value in 2024 that for example is not 11 (wetland) but is equal to 11 in 2022 and
2023. The value in 2024 is then converted to 11 to avoid any regeneration in the last
year. The third process looks in a 3-year moving window to correct any value that

changed in the middle year and returns to the same class next year.

A temporal filter with a slightly different approach was applied to solve problems in
forestry classification. To correct the problems related to the years with forestation

cutting, interrupting a continuous series of years classified as forestry we used a



special six-year spatial filter. The rule of application checks whether two years before
and two years after the class was forestation, if this is true it shifts the classification

of the two middle years to silviculture.

4.4.6.4. Frequency filter

To correct classification problems associated with some classes in specific regions,
frequency filters were applied to use the temporal information available for each pixel
to correct cases of false positives. The general logic of the frequency filter is to
search for each pixel a specific combination of classes throughout the 40 years
producing a subset of pixels considered eligible for correction. Then the filter detects
and overwrites only those years where cases of false positives are present using a
fixed class value, that usually is the mode of classifications detected along the
temporal range. This type of filter was used with parsimony to solve very well

delimited cases.

4.4.6.5. Specific filters

Additional specific filters were generated to remove unexpected classification
changes that remained after applying previous standard filters. In general, these
filters that we applied work with frequency and incidence. Frequency is the number
of years a class occurs in a pixel. The incidence is the number of times that a pixel
classification changes along the entire series of years. The application of these filters

was limited to fix problems of false transitions between specific classes.

We also used a filter that eliminates problems related to the shadows of the
mountains. These filters use characteristics of the relief, in addition to the frequency
to be applied. It corrects false positives of water and wetland in shaded slopes in
regions with wavy relief. The filter selects all pixels classified as water at least in one
year but in less than 37 years (<95%), or as wetland at least in one year but in less
than 35 years (<90%), whenever occurring in areas of cliffs and slopes, established
by a combination of slope data (SRTM derived) with HAND (Height Above the
Nearest Drainage) database, to define places where it is not expected the presence
of water or wetland. In such cases, both classes were replaced by the class

corresponding to the pixel mode.

A filter to smooth abrupt transitions between the first and the second year (1985 -

1986) and the last and penultimate years (2022-2024) was applied It has been



observed in previous collections, that the last year of the series registered an
unexpected increase in the area of anthropic classes and a decrease of natural
classes, most likely corresponding to an artifact resulting from the set of applied
filters. To alleviate the problem, a filter was developed to smooth this abrupt
transition, avoiding all transitions from natural areas to anthropic areas, and vice
versa, in patches equal to or smaller than 2 hectares. In these cases, the
corresponding pixels from the last year receive the same classification as the
penultimate year as well as pixels from the first year receive the same classification

as the second year.

Exceptionally, the spatial effect of some filters was limited to a set of polygons, in
such a way as not to modify the entire zone classification. Similarly, in some cases,
filters were applied only for specific years. Examples of these filters include: a
grassland filter that unifies wet and dry years, taking into account the coverage of
that place and not the rainfall of a particular year. Or a rice filter that corrects sites
classified as wet grasslands, only for certain years, as long as it has been previously

classified as agriculture.

4.4.7 Discrimination Between Pasture and Agriculture

In much of the study region (Uruguay, southern Brazil, and 3 regions of Argentina),
previous collections jointly classified annual crops and perennial pastures into a
single category (Class 21: agriculture or pasture), In MapBiomas Uruguay collection
2, this category was separated into its main components—annual crops and
perennial pastures—using a methodology different from the one previously

described. The inputs and methodology used are detailed below.
4.4.7.1 Imagery

To separate Class 21 (agriculture-pasture as a single class) into agricultural crops
and pastures for the entire temporal series (1985-2024), satellite images from
Landsat 5, 7, 8, and 9 were used. To harmonize measurements across sensors, the
Landsat image collections were harmonized following the approach proposed by Roy
et al. (2016).



From the harmonized image collection, quarterly and annual composites were

generated:
A) Quarterly composites:

e Median of reflective bands (B, G, R, NIR, SWIR1, SWIR2).
e Median of various spectral indices (NDVI, GNDVI, NDMI, NBR).

B) Annual composites (corresponding to an agricultural year: July—June):

e Median, maximum, minimum, standard deviation, and day of the year for
reflective bands (B, G, R, NIR, SWIR1, SWIR2).

e Median, maximum, minimum, standard deviation, and day of the year for
spectral indices (NDVI, GNDVI, NDMI, NBR).

A total of 81 bands of information were considered for the classification process.
4.4.7.2 Classification

A mask of Class 21 was applied for each year within the study period, and only the
pixels within this mask were classified. A supervised approach using the Random
Forest classifier was employed for the classification. Ground truth data were used for
three climatically contrasting years: 2015, 2016, and 2020 (Figure 4). This data
allowed the training of a generic classifier that accounts for climatic variability and

was applied to each year in the temporal series.
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Figure 4: distribution of training samples

4.4.7.3 Post-processing

Post-processing involved applying a modal spatial filter (3x3 window) and a temporal
filter (3 years) exclusively for pastures. The purpose of the temporal filter was to
eliminate pastures lasting less than one year, a scenario that is agronomically

unlikely since pastures generally have a lifespan of 3 to 4 years.

The generated map was then integrated with the original map, resulting in an
updated cartography that separates Class 21 into annual crops and perennial
pastures (Figure 5). From collection 3 onwards, the Agriculture and Pastures
categories were incorporated into the general workflow (see Figure 3). The training

samples used for classification come from stable samples from previous collections.
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Figure 5: lllustrative image of the separation of Class 21 into agriculture (green) and
pasture (yellow), along with the integration into the original map.

4.4.8 Discrimination Between Forest Plantations

In Collection 3 of MapBiomas Uruguay, a relevant methodological improvement was
introduced: the disaggregation of Class 9, originally representing forest plantations
as a single category, into three distinct classes. From this version onwards, pine
plantations, eucalyptus plantations, and other forest plantations are mapped
separately. This enhancement allows for a more detailed and accurate
characterization of the extent and composition of forest plantations across the

national territory.
4.4.8.1 Imagery

To differentiate Class 9 (forest plantations) into the category’s eucalyptus, pinus, and
other forest plantations throughout the temporal series (1985-2024), satellite
imagery from Landsat 5, 7, 8, and 9 was used. To ensure consistency across
sensors, Landsat collections were harmonized following the approach proposed by
Roy et al. (2016).

For each year, spectral bands (B2, B3, B4, B5, B6, B7) and several vegetation and
water indices were calculated, specifically the Normalized Difference Vegetation
Index (NDVI), Enhanced Vegetation Index (EVI), Modified Soil-Adjusted Vegetation
Index (MSAVI), Normalized Difference Water Index (NDWI), and Normalized Burn
Ratio (NBR).

To enhance class separability, temporal statistical metrics—median, maximum,
minimum, and standard deviation—were calculated for each spectral band and index

to summarize intra-annual spectral variability. These metrics were then aggregated



into a multi-band annual composite stack. In addition, topographic variables,
specifically slope and the digital elevation model (DEM) derived from the Shuttle
Radar Topography Mission (SRTM), were incorporated to account for terrain-related

spectral variability.
4.4.8.2 Classification

Forest plantation classes were mapped using a supervised pixel-based classification
based on the Random Forest algorithm (Breiman, 2001). The classification was
constrained to areas identified as forest by the annual MapBiomas forest cover
layers for each year of the study period, within which the three plantation categories
were discriminated.

A single classification model was developed and trained using satellite data from
2020 and subsequently applied to the entire temporal series. The year 2020 was
chosen because it was the most recent year with species-disaggregated
cartographic reference data available at the time of the study (DGF-MGAP, 2021).
Training samples were generated using a stratified random sampling approach to
ensure adequate representation across the spectral variability of all target classes. In
total, 205 samples of eucalyptus plantations, 177 samples of pine plantations, and

110 samples of other forest plantation classes were collected (Figure 6).
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Figure 6: distribution of eucalyptus, pines and other forest plantations training
samples.

4.4.8.3 Post-processing

Given the pixel-based classification and the long temporal span of the dataset,
several post-classification spatial and temporal filters were applied to improve
consistency and reduce noise. The correction process included gap filling, spatial

filtering, and temporal filtering steps.

Gap filling:

A gap-fill filter was applied to ensure temporal continuity at the pixel level. In many
cases, the annual MapBiomas masks identifying woody classes (e.g., native forest
and forest plantations) were not continuous in time, and some pixels intermittently

appeared as non-forest (e.g., grassland). Pixels classified at least once as forest



plantation or native forest during the time series were assigned the non-forest class

for all corresponding years to maintain temporal coherence.

Spatial filtering:

To reduce edge noise and small misclassified patches, a mode filter (3x3 moving
window) was applied, reassigning each pixel to the majority class of its
neighborhood.  Additionally, a connected pixel filter based on the
connectedPixelCount function (native to Google Earth Engine) was implemented to
remove isolated pixels and very small patches. Only areas with at least 111
connected pixels (=10 ha) were retained, defining the minimum mapping unit. This
spatial filter was applied exclusively to pixels classified as forest plantation at least

once, or as native forest for fewer than 10 years in the series.

Temporal filtering:
Temporal filters were applied to correct implausible class transitions.
1. The first filter corrected early-year inconsistencies (1985) by checking class
continuity in 1986 and 1987.

2. The second filter corrected the final year (2024) using information from 2022

and 2023, while avoiding removal of harvest-related non-vegetated states.

3. The third and fourth filters corrected short-term reversions between forest
plantation classes within 3- to 6-year moving windows, replacing intermediate

inconsistencies with stable class values before and after the transition.

4. The fifth filter addressed confusion between forest plantation subclasses,
which commonly occurs in early growth stages. In this step, the class present
at the end of the plantation cycle was propagated backward to correct the

initial years, using a moving window of up to 13 years.

Together, these post-classification procedures minimized temporal noise, removed
spurious transitions, and improved the overall thematic consistency of the forest
plantation maps (Figure 7), without discarding legitimate transitions such as harvests

or land-use changes.



Figure 7: lllustrative image of the separation of Class 9 into eucalyptus, pinus and
other forest plantations.

5 VALIDATION STRATEGIES

Validation was performed for the classifications of the years 1986, 1991, 1996, 2001,
2006, 2012, 2018 and 2022 following the good practices recommendations proposed
by Olofsson et al. (2014) for area and error estimation. The accuracy assessment
was designed for the entire Rio de la Plata grassland biome and included a total of
2,330 samples.2,330 randomly selected samples. The number of samples for each
class was proportional to the area of each class obtained from Collection 1 for the
year 2010. Independent samples were raffled and class classified by visual
interpretation of Landsat images, very high resolution images from Google Earth and
time series of vegetation indices. Two interpreters evaluated each of the sample
points generated from the stratified random design. In those sample points where
discordance in class classification was detected among interpreters, a third
interpreter defined the final class assignment. When a final class could not be
defined by the three interpreters (e.g. three different class assignments), a final class
was agreed by a team of interpreters. More details of the validation methodology are
described in Baeza et al. (2022).

For collection 3, validation results showed an overall accuracy of 87% for 1986, 88 %
for 1991, 89 % for 1996, 90 % for 2001, 85 % for 2006, 88 % for 2012, 84 % for 2018
and 85% for 2022 (Figure 8). In all cases, most of the associated errors were
location mismatches rather than quantity mismatches (see Pontius and Milloes,
2011), allowing for more precise area estimates (global accuracy + location
mismatch): 91%, 93% and 90% for the years 1986, 2001 and 2018, respectively. A

complete classification accuracy analysis comparing the different MapBiomas



collections can be found here.
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Figure 8: Overall accuracy for the MapBiomas Uruguay initiative maps in the 8 year

analyzed.


https://pampa.mapbiomas.org/en/accuracy-analysis/
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