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1​ INTRODUCTION 

1.1 Scope and content of the document 

The objective of this document is to describe the theoretical basis, justification and 

methods applied to produce annual maps of land use and land cover (LULC) in 

Uruguay from 1985 to 2024 (Collection 3). The document presents a general 

description of the satellite image processing, the feature inputs and the process step 

by step applied to obtain the annual classifications. 

1.2 Region of Interest 

MapBiomas Uruguay initiative was created to produce LULC annual maps for the 

Uruguay territory (Figure 1). The total mapped area was 17,8 million hectares (Mha) 

 
Figure 1. Location of Uruguay within the Rio de la Plata grasslands biome and the regionalisation 
used in the classifications (Geomorphological regions proposed by Panario et al., 2014). 



 

2​ GEOGRAPHICAL UNITS OF CLASSIFICATION 

The classification process was carried out in smaller and homogeneous zones 

spatial units. These units correspond to seven geomorphological regions (Panario et 

al. 2014) (Figure 1). The purpose of these geographical units of classification was to 

try to reduce samples and classes confusion and to allow a better balance of 

samples and results to improve accuracy. 
 

3​ REMOTE SENSING DATA 

3.1​ Landsat Collection 

The imagery dataset used in the  MapBiomas Uruguay (LULC), Collection 3 was 

obtained from the Landsat sensors Thematic Mapper (TM), Enhanced Thematic 

Mapper Plus (ETM+) and the Operational Land Imager and Thermal Infrared Sensor 

(OLI-TIRS), on board of Landsat 5, Landsat 7 and Landsat 8, respectively. The 

Landsat imagery collections with 30 m-pixel resolution were accessible via Google 

Earth Engine and were provided by NASA and USGS. The MapBiomas Uruguay 

Collection 3 used Collection 2, Tier 1 Landsat Surface Reflectance products from 

USGS, which underwent through radiometric calibration and orthorectification 

correction based on ground control points and digital elevation model to account for 

pixel co-registration and correction of displacement errors. A total of 18 scene 

boundaries were used to cover the entire region, where each of them is totally or 

partially within the area.  

According to the year and the quality of available images, a specific Landsat 

collection was selected: 

●​ from 1985 to 1999: Landsat 5, 

●​ year 2000: Landsat 5 (Brazil and Uruguay) and Landsat 7 (Argentina), 

●​ years 2001, 2002 and 2012: Landsat 7, 

●​ from 2003 to 2011: Landsat 5, 

●​ from 2013 to 2024: Landsat 8. 

 

3.2​ Landsat Mosaics 

All Landsat scenes were merged and clipped within standardized spatial units for 

data processing, hereafter called ‘charts’, based on the grid of the World 



International Chart to the Millionth, at the 1:250,000 scale level. A total of 19 charts 

were used to cover the biome (Figure 2). Each chart sets the geographical limits to 

build up the temporal and spatial Landsat mosaics and to proceed with digital 

classification procedures. Each geographical classification unit was generated by 

merging the correspondent mosaic charts. 

 
Figure 2. Charts scheme used to build up Landsat mosaics used throughout the classification 
process.  



3.3​ Definition of the temporal period 

The mosaics were formed by the composition of pixels in each set of images for a 

certain time period. The periods of the year in which the images are selected vary by 

country and result from the balance between the probability of maximizing the 

differences in classes spectral behavior and the availability of cloud-free images. The 

considered period was from September to November of each year. Nevertheless, for 

some years this period was adapted (extended one to three months) for each chart 

according to the availability of cloud-free images. For example, if during the 

three-months period a cloud free mosaic could not be generated, the period was 

extended to four, five or six months to get a complete or almost complete mosaic. 

For the selection of Landsat scenes a threshold of 90% of cloud cover was applied 

(i.e., any available scene with up to 90% of cloud cover was accepted). This limit 

was established based on a visual analysis, after many trials observing the results of 

the cloud removing/masking algorithm. Time periods were extended for some years 

and portions of the study area when the availability of cloud-free images was low. 

4​ CLASSIFICATION 

4.1​ Overview of methodological process  

The methodological procedures of Collection 3 included several steps (Figure 3).  

The first step was to generate annual Landsat image mosaics based on yearly 

periods. The second step was to generate a new selection of temporally stable 

samples derived from the stable areas of the maps of Collection 2. Stable areas 

were defined in sub-periods of near 10 years-length (1985-1994, 1995-2004, 

2005-2014 and 2015-2023). Then, the spectral feature inputs derived from the 

Landsat bands were extracted and associated to each sample point. Once the 

samples for each LULC class were selected for each of the subregions, it was 

possible to adjust the training data set according to its statistical needs. The number 

of samples for training for each class was defined initially according to the proportion 

of the area of each class and its variation along the classification period (sample size 

balance). Additionally, to improve the classification results, complementary samples 

were generated, defining georeferenced points of different classes by visual 

interpretation of historical satellite images (high and very high resolution images) and 

time series of vegetation indices. Based on the adjusted training data set, a 

supervised classification using the random forest algorithm was run.  



 

Following that, gap, spatial, temporal and frequency filters were applied to remove 

classification noise and stabilize the classification. The LULC maps of each region 

were integrated to generate the final map of Collection 3. The MapBiomas Uruguay 

annual LULC maps were used to derive the transition analysis (with an additional 

spatial filter application) and statistics. The statistical analysis covered different 

spatial territories, such as countries, state similar and municipality similar levels of 

each country, water basin and phytogeographic provinces. 

 

 

 

Figure 3. Classification process of Collection 3 in the MapBiomas Uruguay for the period 1985-2024 

 

4.2​ Map Legend 
The classification for the MapBiomas Uruguay initiative using Landsat mosaics 

included eleven land use and land cover (LULC) classes (Table 1): Closed forest 

and closed shrubland (3), Flooded grassland and swampy areas (11), Grassland 

(12), Pasture (15), Pinus plantation (79), Eucalyptus plantation (80), Other forestry 

uses (83), Agriculture (18), Non vegetated area (22), River, lake or ocean (33) and 

Not observed (27). A full description of the legend is described in the document 

Legend Description. 

http://ruguay.mapbiomas.org/codigos-de-la-leyenda/
http://ruguay.mapbiomas.org/codigos-de-la-leyenda/


 

Table 1. Land cover and land use classes considered for digital classification of Landsat mosaics for 
the MapBiomas Uruguay initiative - Collection 3. 

Legend class of Collection 3  Numeric ID Color 

1.1. Forest formation 3  

2.1. Wetland  11  

2.2. Grassland  12  

3.1. Pasture 15  

3.2. Agriculture 19  

3.3.1. Pinus plantation 79  

3.3.2. Eucalyptus plantation 80  

3.3.2. Other forestry uses 83  

4. Non vegetated area 22  

5.1. River, lake or ocean 33  

6. Not observed 27  

 
 



4.3​ Annual Mosaics 

The total available bands of the MapBiomas Uruguay feature space is composed of 

93 input variables, including the original Landsat bands, fractional and textural 

information derived from these bands (Table 2). Reducers were used to generate 

temporal features such as: 

● Median: median of the pixel values of the best mapping period defined by each 
country. 

● Median_dry: median of the quartile of pixels with the lowest NDVI values. 

● Median_wet: median of the quartile of pixels with the highest NDVI values. 

● Amplitude: amplitude of variation of the index considering all the images of each 
year. 

● stdDev: standard deviation of all pixel values of all images of each year. 

● Min: lower annual value of the pixels of each band. 

 

 

 

 



 
Table 2. List of the variables included in the feature space used in the classification processes of the MapBiomas Uruguay Initiative Collection 3 (1985-2024). 
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4.4​ Classification algorithm, training samples and parameters 

Classification was performed subregion by subregion, year by year, using the 

Random Forest algorithm (Breiman, 2001) available in Google Earth Engine, running 

100 iterations (random forest trees).  

Training samples for each subregion were defined following a strategy of using 

random pixels for which the land use and land cover remained the same (stable 

samples) along the maps of Collection 3 over different subperiods: 1985-1994, 

1995-2004, 2005-2014 and 2015-2024, named as “stable samples”. 

The identification of stable areas consist in extracting random pixels or “stable 

samples” based on a criterion of minimum temporal frequency aiming to ensure 

confidence to use them as training areas. Each pixel should be classified with the 

same LULC class throughout each sampling subperiod (1985-1994, 1995-2004, 

2005-2014 and 2015-2024). A layer of pixels with a stable classification for each 

subperiod was then generated. From the resulting layer of stable samples, a subset 

of 2,000 samples for each subregion was randomly generated for each class for 

each subperiod. It is important to clarify that not all of these samples were 

necessarily used in the classification process for each year. 

In addition, a classical procedure to detect outliers was implemented. For each year, 

and within each training class, we searched for outliers in all variables. An outlier 

was defined as any value of a specific variable lower or higher than 1.5 times the 

interquartile range (the first quartile value subtracted from the third quartile value) 

considering all values of this variable within a specific class of a particular year. 

Samples containing values considered outliers for some variables were not 

discarded a priori, but fixed by replacing those values with the 5th percentile or the 

95th percentile, whenever they were lower or higher than the thresholds considered, 

respectively. Finally, we disregarded only those samples containing simultaneously 

more than 20 variables of the feature space with values considered as outliers.  

4.4.1​ Sample size balance 

We generated a fixed number of samples for each class, subregion and subperiod 

for classification. However we used in the classification process only a random 

subset based on the class area proportion within each subregion, considering each 

year to be classified. To do this, we previously adjusted linear simple functions to 



estimate the area of each class for each year from 1985 to 2024, based on the 

annual class area observed along the Collection 2 dataset. These functions were 

used to estimate, for each year, the proportion of each class to train the classifier. 

Then, these annual proportions for each class were set to extract a subset of the 

available samples for the correspondent classification in each year.  Whenever the 

classification resulted in overestimation or underestimation of the class after 

comparing with supplemental information (e.g.: Collection 3 maps, independent crop 

type maps, etc.) this proportion was adjusted changing the bias (intercept of linear 

regression model) accordingly. Notwithstanding the above, a minimum number of 50 

to 100 samples per class was set for each region and year, to ensure the correct 

detection of the less frequent categories.  

4.4.2 Complementary samples 

The need for adding complementary samples was evaluated by visual inspection of 

the output of a preliminary classification, with both Landsat and high-resolution 

images available in Google Earth Engine and time series of vegetation indices, and 

also by comparing with the Collection 2 classification. Complementary sample 

collection was also done manually using points in Google Earth Engine Code Editor. 

All the false-color images of the 40 years (1985-2024) Landsat mosaics and the 

vegetation index time series were checked at the selected point. Based on the 

knowledge of each subregion, the samples for different classes were collected. 

Complementary samples previously generated for Collection 2 were also added in 

some regions to improve the classification when necessary. 

4.4.5 Final classification 

The final classification was performed for all subregions and years combining stable 

and complementary samples. For some years, the classification output resulted in 

anomalous results for some classes. Then, it was necessary to improve the 

classification through a new sample size balance and a specific set of 

complementary samples. 

4.4.6 Post-classification 

The results of the final classification were improved through a sequence of filters, to 

correct missing data, “salt-and-pepper” classification errors and, specially, cases of 

misclassification. Temporal filters were done with the aim to generate a more stable 



classification pattern over time, avoiding unexpected class variation during short 

times. 

4.4.6.1. Gap fill filter  

A filter to fill no-data pixels (“gaps”) was applied. Because theoretically the no-data 

values are not allowed, they are replaced by the temporally nearest valid 

classification. In this procedure, if no “future” valid position was available, then the 

no-data value was replaced by its previous valid class. Therefore, gaps should only 

exist if a given pixel has been permanently classified as no-data throughout the 

entire temporal domain. 

4.4.6.2. Spatial filter  

The spatial filter avoids unwanted modifications to the edges of the pixel groups, a 

spatial filter was built based on the "connectedPixelCount" function. Native to the 

Google Earth Engine platform, this function locates connected components 

(neighbors) that share the same pixel value. Thus, only pixels that did not share 

connections to a predefined number of identical neighbors were considered isolated. 

In this filter, at least six connected pixels were needed to reach the minimum 

connection value. Consequently, the minimum mapping unit is directly affected by 

the spatial filter applied, and it was defined as 6 pixels (~0,5 ha). 

4.4.6.3. Temporal filters 

The temporal filters use the information from the year before and after to identify and 

correct a pixel misclassification, considered as cases of invalid transitions. In a first 

step, the filter looks for specific cover classes (3, 11, 12, 33) that are not this class in 

1985 and were kept unchanged in 1986 and 1987 and then corrects the 1985’s value 

to avoid any regeneration in the first year. In a second step, the filter looks at a pixel 

value in 2024 that for example is not 11 (wetland) but is equal to 11 in 2022 and 

2023. The value in 2024 is then converted to 11 to avoid any regeneration in the last 

year. The third process looks in a 3-year moving window to correct any value that 

changed in the middle year and returns to the same class next year. 

A temporal filter with a slightly different approach was applied to solve problems in 

forestry classification. To correct the problems related to the years with forestation 

cutting, interrupting a continuous series of years classified as forestry we used a 



special six-year spatial filter. The rule of application checks whether two years before 

and two years after the class was forestation, if this is true it shifts the classification 

of the two middle years to silviculture. 

4.4.6.4. Frequency filter 

To correct classification problems associated with some classes in specific regions, 

frequency filters were applied to use the temporal information available for each pixel 

to correct cases of false positives. The general logic of the frequency filter is to 

search for each pixel a specific combination of classes throughout the 40 years 

producing a subset of pixels considered eligible for correction. Then the filter detects 

and overwrites only those years where cases of false positives are present using a 

fixed class value, that usually is the mode of classifications detected along the 

temporal range. This type of filter was used with parsimony to solve very well 

delimited cases.  

4.4.6.5. Specific filters 

Additional specific filters were generated to remove unexpected classification 

changes that remained after applying previous standard filters. In general, these 

filters that we applied work with frequency and incidence. Frequency is the number 

of years a class occurs in a pixel. The incidence is the number of times that a pixel 

classification changes along the entire series of years. The application of these filters 

was limited to fix problems of false transitions between specific classes.  

We also used a filter that eliminates problems related to the shadows of the 

mountains. These filters use characteristics of the relief, in addition to the frequency 

to be applied. It corrects false positives of water and wetland in shaded slopes in 

regions with wavy relief. The filter selects all pixels classified as water at least in one 

year but in less than 37 years (<95%), or as wetland at least in one year but in less 

than 35 years (<90%), whenever occurring in areas of cliffs and slopes, established 

by a combination of slope data (SRTM derived) with HAND (Height Above the 

Nearest Drainage) database, to define places where it is not expected the presence 

of water or wetland. In such cases, both classes were replaced by the class 

corresponding to the pixel mode. 

A filter to smooth abrupt transitions between the first and the second year (1985 - 

1986) and the last and penultimate years (2022-2024) was applied It has been 



observed in previous collections, that the last year of the series registered an 

unexpected increase in the area of anthropic classes and a decrease of natural 

classes, most likely corresponding to an artifact resulting from the set of applied 

filters. To alleviate the problem, a filter was developed to smooth this abrupt 

transition, avoiding all transitions from natural areas to anthropic areas, and vice 

versa, in patches equal to or smaller than 2 hectares. In these cases, the 

corresponding pixels from the last year receive the same classification as the 

penultimate year as well as pixels from the first year receive the same classification 

as the second year. 

Exceptionally, the spatial effect of some filters was limited to a set of polygons, in 

such a way as not to modify the entire zone classification. Similarly, in some cases, 

filters were applied only for specific years. Examples of these filters include: a 

grassland filter that unifies wet and dry years, taking into account the coverage of 

that place and not the rainfall of a particular year. Or a rice filter that corrects sites 

classified as wet grasslands, only for certain years, as long as it has been previously 

classified as agriculture. 

 

4.4.7 Discrimination Between Pasture and Agriculture 
In much of the study region (Uruguay, southern Brazil, and 3 regions of Argentina), 

previous collections jointly classified annual crops and perennial pastures into a 

single category (Class 21: agriculture or pasture), In MapBiomas Uruguay collection 

2, this category was separated into its main components—annual crops and 

perennial pastures—using a methodology different from the one previously 

described. The inputs and methodology used are detailed below. 

4.4.7.1 Imagery 

To separate Class 21 (agriculture-pasture as a single class) into agricultural crops 

and pastures for the entire temporal series (1985–2024), satellite images from 

Landsat 5, 7, 8, and 9 were used. To harmonize measurements across sensors, the 

Landsat image collections were harmonized following the approach proposed by Roy 

et al. (2016). 



From the harmonized image collection, quarterly and annual composites were 

generated: 

A) Quarterly composites: 

●​ Median of reflective bands (B, G, R, NIR, SWIR1, SWIR2). 

●​ Median of various spectral indices (NDVI, GNDVI, NDMI, NBR). 

B) Annual composites (corresponding to an agricultural year: July–June): 

●​ Median, maximum, minimum, standard deviation, and day of the year for 

reflective bands (B, G, R, NIR, SWIR1, SWIR2). 

●​ Median, maximum, minimum, standard deviation, and day of the year for 

spectral indices (NDVI, GNDVI, NDMI, NBR). 

A total of 81 bands of information were considered for the classification process. 

4.4.7.2 Classification 

A mask of Class 21 was applied for each year within the study period, and only the 

pixels within this mask were classified. A supervised approach using the Random 

Forest classifier was employed for the classification. Ground truth data were used for 

three climatically contrasting years: 2015, 2016, and 2020 (Figure 4). This data 

allowed the training of a generic classifier that accounts for climatic variability and 

was applied to each year in the temporal series. 

 

 



 

Figure 4: distribution of training samples 

  

4.4.7.3 Post-processing 

Post-processing involved applying a modal spatial filter (3x3 window) and a temporal 

filter (3 years) exclusively for pastures. The purpose of the temporal filter was to 

eliminate pastures lasting less than one year, a scenario that is agronomically 

unlikely since pastures generally have a lifespan of 3 to 4 years. 

The generated map was then integrated with the original map, resulting in an 

updated cartography that separates Class 21 into annual crops and perennial 

pastures (Figure 5). From collection 3 onwards, the Agriculture and Pastures 

categories were incorporated into the general workflow (see Figure 3). The training 

samples used for classification come from stable samples from previous collections. 



 

Figure 5: Illustrative image of the separation of Class 21 into agriculture (green) and 
pasture (yellow), along with the integration into the original map. 

 

4.4.8 Discrimination Between Forest Plantations 
In Collection 3 of MapBiomas Uruguay, a relevant methodological improvement was 

introduced: the disaggregation of Class 9, originally representing forest plantations 

as a single category, into three distinct classes. From this version onwards, pine 

plantations, eucalyptus plantations, and other forest plantations are mapped 

separately. This enhancement allows for a more detailed and accurate 

characterization of the extent and composition of forest plantations across the 

national territory. 

4.4.8.1 Imagery 

To differentiate Class 9 (forest plantations) into the category’s eucalyptus, pinus, and 

other forest plantations throughout the temporal series (1985–2024), satellite 

imagery from Landsat 5, 7, 8, and 9 was used. To ensure consistency across 

sensors, Landsat collections were harmonized following the approach proposed by 

Roy et al. (2016). 

For each year, spectral bands (B2, B3, B4, B5, B6, B7) and several vegetation and 

water indices were calculated, specifically the Normalized Difference Vegetation 

Index (NDVI), Enhanced Vegetation Index (EVI), Modified Soil-Adjusted Vegetation 

Index (MSAVI), Normalized Difference Water Index (NDWI), and Normalized Burn 

Ratio (NBR). 

To enhance class separability, temporal statistical metrics—median, maximum, 

minimum, and standard deviation—were calculated for each spectral band and index 

to summarize intra-annual spectral variability. These metrics were then aggregated 



into a multi-band annual composite stack. In addition, topographic variables, 

specifically slope and the digital elevation model (DEM) derived from the Shuttle 

Radar Topography Mission (SRTM), were incorporated to account for terrain-related 

spectral variability. 

4.4.8.2 Classification 

Forest plantation classes were mapped using a supervised pixel-based classification 

based on the Random Forest algorithm (Breiman, 2001). The classification was 

constrained to areas identified as forest by the annual MapBiomas forest cover 

layers for each year of the study period, within which the three plantation categories 

were discriminated. 

A single classification model was developed and trained using satellite data from 

2020 and subsequently applied to the entire temporal series. The year 2020 was 

chosen because it was the most recent year with species-disaggregated 

cartographic reference data available at the time of the study (DGF-MGAP, 2021). 

Training samples were generated using a stratified random sampling approach to 

ensure adequate representation across the spectral variability of all target classes. In 

total, 205 samples of eucalyptus plantations, 177 samples of pine plantations, and 

110 samples of other forest plantation classes were collected (Figure 6). 



 
Figure 6: distribution of eucalyptus, pines and other forest plantations training 

samples. 

4.4.8.3 Post-processing 

Given the pixel-based classification and the long temporal span of the dataset, 

several post-classification spatial and temporal filters were applied to improve 

consistency and reduce noise. The correction process included gap filling, spatial 

filtering, and temporal filtering steps. 

 

Gap filling:​

A gap-fill filter was applied to ensure temporal continuity at the pixel level. In many 

cases, the annual MapBiomas masks identifying woody classes (e.g., native forest 

and forest plantations) were not continuous in time, and some pixels intermittently 

appeared as non-forest (e.g., grassland). Pixels classified at least once as forest 



plantation or native forest during the time series were assigned the non-forest class 

for all corresponding years to maintain temporal coherence. 

 

Spatial filtering:​

To reduce edge noise and small misclassified patches, a mode filter (3×3 moving 

window) was applied, reassigning each pixel to the majority class of its 

neighborhood. Additionally, a connected pixel filter based on the 

connectedPixelCount function (native to Google Earth Engine) was implemented to 

remove isolated pixels and very small patches. Only areas with at least 111 

connected pixels (≈10 ha) were retained, defining the minimum mapping unit. This 

spatial filter was applied exclusively to pixels classified as forest plantation at least 

once, or as native forest for fewer than 10 years in the series. 

 

Temporal filtering:​

Temporal filters were applied to correct implausible class transitions. 

1.​ The first filter corrected early-year inconsistencies (1985) by checking class 

continuity in 1986 and 1987. 

2.​ The second filter corrected the final year (2024) using information from 2022 

and 2023, while avoiding removal of harvest-related non-vegetated states. 

3.​ The third and fourth filters corrected short-term reversions between forest 

plantation classes within 3- to 6-year moving windows, replacing intermediate 

inconsistencies with stable class values before and after the transition. 

4.​ The fifth filter addressed confusion between forest plantation subclasses, 

which commonly occurs in early growth stages. In this step, the class present 

at the end of the plantation cycle was propagated backward to correct the 

initial years, using a moving window of up to 13 years. 

Together, these post-classification procedures minimized temporal noise, removed 

spurious transitions, and improved the overall thematic consistency of the forest 

plantation maps (Figure 7), without discarding legitimate transitions such as harvests 

or land-use changes. 

 



 
Figure 7: Illustrative image of the separation of Class 9 into eucalyptus, pinus and 

other forest plantations. 

 

5​ VALIDATION STRATEGIES 

Validation was performed for the classifications of the years 1986, 1991, 1996, 2001, 

2006, 2012, 2018 and 2022 following the good practices recommendations proposed 

by Olofsson et al. (2014) for area and error estimation. The accuracy assessment 

was designed for the entire Río de la Plata grassland biome and included a total of 

2,330 samples.2,330 randomly selected samples. The number of samples for each 

class was proportional to the area of each class obtained from Collection 1 for the 

year 2010. Independent samples were raffled and class classified by visual 

interpretation of Landsat images, very high resolution images from Google Earth and 

time series of vegetation indices. Two interpreters evaluated each of the sample 

points generated from the stratified random design. In those sample points where 

discordance in class classification was detected among interpreters, a third 

interpreter defined the final class assignment. When a final class could not be 

defined by the three interpreters (e.g. three different class assignments), a final class 

was agreed by a team of interpreters. More details of the validation methodology are 

described in Baeza et al. (2022).  

For collection 3, validation results showed an overall accuracy of 87% for 1986, 88 % 

for 1991, 89 % for 1996, 90 % for 2001, 85 % for 2006, 88 % for 2012, 84 % for 2018 

and 85% for 2022 (Figure 8). In all cases, most of the associated errors were 

location mismatches rather than quantity mismatches (see Pontius and Milloes, 

2011), allowing for more precise area estimates (global accuracy + location 

mismatch): 91%, 93% and 90% for the years 1986, 2001 and 2018, respectively. A 

complete classification accuracy analysis comparing the different MapBiomas 



collections can be found here. 

 

Figure 8: Overall accuracy for the MapBiomas Uruguay initiative maps in the 8 year 

analyzed. 

https://pampa.mapbiomas.org/en/accuracy-analysis/
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